

Refined intuition:

- either pred(hi(q), hi(S)) or pred(lo(q), lo(S)) is relevant
- query algorithm can read $\leq \sqrt{n}$ cells as f(relevant part)

Look at what query does \Rightarrow Fix some problem adversarially \Rightarrow public bits change \Rightarrow Query does something else!

An Encoding Argument

Impossible: Encode $A[1..k] \in \{0,1\}^k$ with less than k bits on avg.

Proof by contradiction:

- Assume Pr[random query reads a published cell] < 1/100
- Use this data structure to create an impossible encoder.

The Encoding

- 1. Generate one random query/subproblem $(q_1, q_2, ..., q_k)$
- 2. Generate random database depending on queries: $A[j]=0 \Rightarrow lo(q_i)$ is relevant in problem j $A[j]=1 \Rightarrow hi(q_j)$ is relevant in problem j

3. Write public bits = f(database)

- → o(k) bits 4. Classify queries: when $|S_{hi(qj)}| \le (n/k)^{\frac{1}{2}}$ query is $\textcircled{}{}$ iff A[j]=0when $|S_{hi(qj)}^{(m)j}| > (n/k)^{\frac{1}{2}}$ query is \bigcirc iff A[j]=1
- By assumption, E[number of \bigotimes queries] \ge 99% k 5. So decoder can learn 99% of A[1..k] from public bits!

6. Write in encoding which guesses are wrong

 \rightarrow lg (k choose k/100) \ll k bits